Methods for Incorporating Flexibility in Clinical Trials

Janet Wittes BASS Election Day 2004

Option #1: Do as planned

- Design a study
 - Unambiguous protocol
 - Rigorous analysis plan
- No interim peeking at the data
- Complete the protocol as planned
- Analyze the data as planned

Goals of flexible designs

- Prevent harm to participants
- Increase probability of assigning the best treatment to the participants in the trial
- Speed drug development
- Find right answer faster than a fixed design
- Get scientifically more correct results

Little vs. big changes

Little

- Clarifying protocol
- Administrative changes
- Big: need approval
 - IRBs
 - Inform or reconsent participants
- Very big: change design

Prespecification

- Highly desirable
- Not sufficient
- Not necessary

Prespecification

- Highly desirable
- Not sufficient
- Not necessary

Rigor vs. rigidity

Not sufficientstepwise not alpha-preserving

Step 1. ANOVA will assess effects of X & Y. If p-value for Rx × X or Y is <0.15, the data will be pooled appropriately.
Step 2. After pooling, use ANOVA to test Ho.

Not sufficientlanguage ambiguous

The primary efficacy endpoint will be analyzed by survival methods such as the log-rank test.

Not sufficient-structurally biased

 The primary analysis will be performed in the per protocol population.
 Cases will be counted

if they occur > 14 days after the 3rd dose of vaccine.

Not necessary

- But this is not a license to do whatever!
- Design carefully!!
- Don't intend to make unplanned changes!!!

Nature of change

- Structured
- Unacceptable
- Unstructured, but acceptable
- Unstructured, but nearly acceptable

Who makes changes?

Blinded: Sponsor & investigatorsUnblinded: DSMB

Structured

Interim analysis -DSMB

- Safety
- Efficacy
- Futility

Sample size recalculation

- Unblinded: DSMB
- Blinded: Sponsor/investigators

Sample size recalculation

- Nuisance parameters
- Effect size
 - Don't use methods to save sample size
 - Blinding may be difficult
 - New effect size may not be of interest

Unacceptable

- Betting on the horse after the race
- Finding the subgroup
- Censoring at crossover
- Ambiguous analysis plan
 - "such as"
 - "some covariates"

Unstructured but acceptable

- Modifying entry criteria if not for efficacy
- Changing analysis of primary endpoint
- Changing primary endpoint

Defining primary endpoint Example: Post-CABG

- Aggressive lipid lowering post CABG
- Angiographic endpoint
- Design
 - Randomize
 - Take angiogram
 - Wait five years
- Endpoint????

Why was post-CABG ok?

- Blind for five years
- Sized on simple endpoint
- We knew we could do better
- Final endpoint: correlated binary

Expanding endpoint: large coronary disease trial

- Clinical endpoints
 - CV death
 - MI
 - Urgent revascularization
- Endpoint rate too low
 - Added additional endpoints
 - Proustian question: how to recapture the past

Changing endpoint: <u>muscle wasting disease</u>

- Two competing primaries endurance
 - \cdot 6 m walk
 - 3 m stair also assesses respiratory function
- Chose stair climb
- During trial, saw people reached top
- Changed to walk distance

Changing analysis: lung trial

- Endpoint: 6 month FEV₁
- Protocol:
 - ANOVA at 6 mo
 - FEV_1 as baseline covariate
- Data analysis plan
 - Longitudinal analysis
 - Final test: contrast at 6 mo
- Preserves spirit, not letter, of protocol

Third line cancer trials

- Primary endpoint: mortality
- Secondaries: TTP, PFS, etc.
- Strategy #1:
 - Size for mortality
 - If you lose, argue for PFS
- Strategy #2
 - Co-primary
 - Split alpha between mortality and PFS

The gamble

Strategy #1: FDA etc. may not agree
Strategy #2: Sample size increases

Consequence to sample size

{(z_{1-α/2}+z_β)/(z_{1-α/4}+z_β)}²
 Splitting alpha at 0.025/0.025 increases sample size ~ 20% for trials powered at 80 –90%

Unstructured, but nearly acceptable -cancer example

- Independent review of response
- Protocol says: no clinical input
- Fails to distinguish cancer from cyst
- Conclusion: add clinical input (but remain blind)

Unstructured, but nearly acceptable -neurology example

- Endpoint a scale with range 0 to 80
- Lots of missing endpoint data
- Protocol says: use multiple imputation
- MI produces
 - Observations from -32 to 243
 - Silly values (43, 48, 32, 54, **3**)
- Choose method reflecting intent of the framers

Unstructured, but nearly acceptable -malaria example

- Prior data: 30% of unpretreated kids get malaria
 - Malaria has many definitions
 - Fever, parasitemia, anemia
- Factorial –pretreat (Y/N), vaccine/placebo
- Interest in the vaccine/placebo comparison
- 3 months in trial, >90% unpretreated get malaria

Malaria, continued

	Pretreated		
	Yes	No	Total
Vaccine	?	?	?
Placebo	?	?	?
	30%	90%	

Think through what might go wrong

Think through what might go wrongCollect supportive data

- Think through what might go wrong
- Collect supportive data
- Stat/clinical oneness

- Think through what might go wrong
- Collect supportive data
- Stat/clinical oneness
- Watch study carefully during execution

- Think through what might go wrong
- Collect supportive data
- Stat/clinical oneness
- Watch study carefully during execution
- Preserve blind meticulously

- Think through what might go wrong
- Collect supportive data
- Stat/clinical oneness
- Watch study carefully during execution
- Preserve blind meticulously
- Know who is responsible for change (and keep good records!)

Benefits of allowing change

- Can save the trial
- Can save the team from its own errors
- Can lead to better more useful knowledge

But beware of risks!

- Generally-
 - A changed trial is less efficient than an unchanged one
 - The later the change, the less credible the results